## INDOOR AIR QUALITY TRANSMITTERS SIRO-MOD SERIES

## INSTALLATION INSTRUCTIONS

#### INTRODUCTION

Thank you for choosing an HK Instruments Siro-MOD series indoor air quality transmitter. The Siro-MOD series transmitters are intended for use in building automation systems in the HVAC/R industry.

Siro-MOD is an indoor air quality transmitter with a modern design. The transmitter is available with several optional air quality sensors. The modular device can be equipped with  $\mathrm{CO}_2$  concentration and VOC (Volatile Organic Compounds) measurements or alternatively PM (Particulate Matter) measurement and in addition temperature and humidity measurements. It offers easy installation and adjustment, several different model options and various output signals that are configurable separately for each measurement parameter.

The Siro-MOD series devices are available with user interface that includes LCD display and buttons making the configuration of the device quick and easy. An external configuration tool is necessary for commissioning preparations for Siro-MOD without user interface. Configuration is also possible via Modbus network. Siro-MOD utilizes the industry standard NDIR measurement principle with self-calibrating ABC logic for CO measurement.

#### **WARNING**

- READ THESE INSTRUCTIONS CAREFULLY BEFORE ATTEMPTING TO INSTALL, OPERATE OR SERVICE THIS DEVICE.
- Failure to observe safety information and comply with instructions can result in PERSONAL INJURY, DEATH AND/OR PROPERTY DAMAGE.
- To avoid electrical shock or damage to equipment, disconnect power before installing or servicing and use only wiring with insulation rated for full device operating voltage.
- To avoid potential fire and/or explosion do not use in potentially flammable or explosive atmospheres.
- Retain these instructions for future reference.
- This product, when installed, will be part of an engineered system
  whose specifications and performance characteristics are not
  designed or controlled by HK Instruments. Review applications
  and national and local codes to assure that the installation will
  be functional and safe. Use only experienced and knowledgeable
  technicians to install this device.

#### **APPLICATIONS**

Siro-MOD series devices are commonly used to monitor and control:

- indoor air quality in offices, public spaces, meeting rooms and classrooms
- CO<sub>2</sub> and VOC concentration to regulate demand-controlled ventilation and to keep the indoor air quality in a good level
- PM concentration to measures the size and amount of particulates in the indoor air for example to assess the performance of air filters
- temperature and humidity in HVAC/R environment

## **SPECIFICATIONS**

## Performance

Measurement ranges:

CO<sub>2</sub>: 0-2000 ppm / 400-2000 ppm

(selectable via jumper)

VOC: CO<sub>2</sub>eq: 400-2000 ppm

TVOC ppm: 0-30.0 ppm TVOC  $\mu$ g/m³: 0-10000  $\mu$ g/m³ IAQ index: 1-5 (UBA rating)

PM1/PM2.5/PM10:  $0-50 \mu g/m^3 / 0-500 \mu g/m^3$ 

(selectable via jumper)
IAQ index: 1-5 (WHO rating)

Temperature: 0...50 °C

Relative humidity: 0-100 %rH

Accuracy:

 $CO_2$ :  $\pm 40 \text{ ppm} + 3 \% \text{ of reading (typical)},$ 

additional ±60 ppm for first weeks

VOC\*: 15 % of reading (typical)
\*VOC sensor is tuned for typical IAQ Mix of 22 VOCs as

defined by Mølhave et al. (1997)

PM:

 $0...100 \, \mu g/m3$ :

PM2.5:  $\pm 15 \,\mu g/m^3$  (at 25 °C  $\pm 5$  °C) PM1/PM10\*:  $\pm 25 \,\mu g/m^3$  (at 25 °C  $\pm 5$  °C)

 $100...1000 \, \mu g/m3$ :

PM2.5:  $\pm 15$  % (at 25 °C  $\pm 5$  °C) PM1/PM10\*:  $\pm 25$  % (at 25 °C  $\pm 5$  °C) \*PM1 and PM10 values are calculated from PM2.5 measurement reading with the default particle distribution.

Temperature:  $\pm 0.4$  °C (typical at 20 °C)

Relative humidity: ±2.2 %rH (typical at 20 °C, 30 %rH)

#### **Technical Specifications**

Media compatibility:

Dry air or non-aggressive gases

Measuring units:

 $CO_2$ : ppm  $CO_2$ eq: ppm

TVOC: ppm, μg/m³
PM: PM1/PM2.5/PM10: μg/m³

Temperature: °C/°F Relative humidity: %rH

Measuring element:

CO<sub>2</sub>: Non-dispersive infrared (NDIR)VOC: Complementary Metal Oxide

Semiconductor (CMOS)

PM: Laser-based light scattering particle sensing

Temperature: Integrated to CMOS

Relative humidity: Thermoset polymer capacitive

sensing element Calibration:

Automatic self-calibration ABC Logic<sup>™</sup> for CO<sub>2</sub>

measurement **Environment**:

Operating temperature: 0...50 °C

Storage temperature: -20...70 °C Humidity: 0 to 95 %rH, non condensing

#### Physical

Dimensions: Case: 95 x 103 x 30 mm

(width x height x depth)

Weight: 130 g Mounting:

2 screw holes slotted, distance c/c 60 mm

Materials: Case: ABS

Protection standard: IP20 Display (optional)

Monochrome LCD, 38 x 23 mm **Electrical connections:** 

10-pin spring loaded terminal block 0.2...1.5 mm<sup>2</sup> (16-24 AWG)

**Electrical** 

Input: 24 VAC or VDC,  $\pm 10~\%$ 

Power consumption: 2 W max + 25 mW for each voltage output or 50 mW for each current output

Outputs:

4 outputs, have to select voltage or current

Voltage outputs: 0-10 V

 $2\text{--}10\,V$  /  $0\text{--}5\,V$  (optional, display or

configuration tool required)

Current output:

4-20 mA (optional)

Output signal limits:

Voltage outputs: R > 1 k $\Omega$ 

Current output: R > 20  $\Omega$ , R < 500  $\Omega$ 

#### Communication

Protocol: MODBUS over Serial Line

Transmission Mode: RTU

Interface: RS485

Byte format 11 bits (10 bits if parity none):

Coding System: 8-bit binary

Bits per Byte: 1 start bit

8 data bits, least significant bit sent first

1 bit for parity

1 stop bit

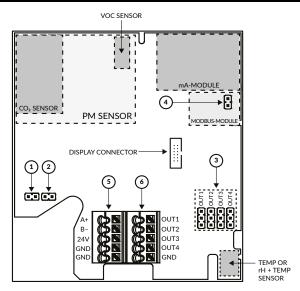
Baud rate: selectable in configuration

Modbus address: 1–247 addresses selectable in configuration menu

#### Conformance

Meets requirements for:

CE: UKCA:
EMC: 2014/30/EU S.I. 2016/1091
RoHS: 2011/65/EU S.I. 2012/3032
WEEE: 2012/19/EU S.I. 2013/3113


COMPANY WITH MANAGEMENT SYSTEM CERTIFIED BY DNV ISO 9001•ISO 14001





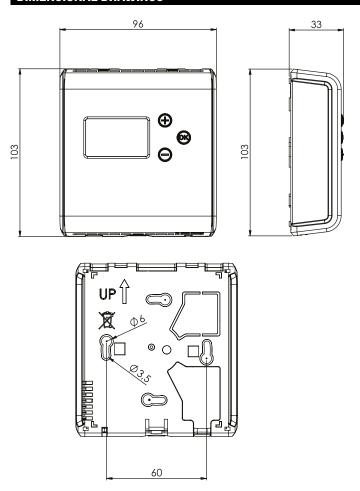


## **SCHEMATICS**



| 1 | Pin header        | Description                                     |  |  |
|---|-------------------|-------------------------------------------------|--|--|
|   |                   | CO <sub>2</sub> / PM output range selection     |  |  |
|   | Open              | 4002000 ppm (CO <sub>2</sub> models)            |  |  |
|   | Connected         | 02000 ppm (CO <sub>2</sub> models)              |  |  |
|   | Open<br>Connected | 0500 μg/m³ (PM models)<br>050 μg/m³ (PM models) |  |  |

| 2 | Pin header | Description        |  |
|---|------------|--------------------|--|
|   |            | Menu lock          |  |
|   | Open       | Menu lock disabled |  |
|   | Connected  | Menu lock enabled  |  |

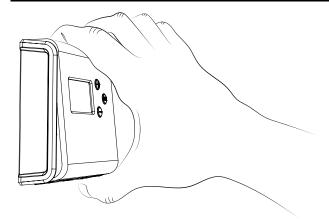

| 3 | Pin header | Description                        |  |  |  |  |
|---|------------|------------------------------------|--|--|--|--|
|   |            | Voltage / current output selection |  |  |  |  |
|   |            | Current output is an optional      |  |  |  |  |
|   | OUT1       | Output 1                           |  |  |  |  |
|   | OUT2       | Output 2                           |  |  |  |  |
|   | OUT3       | Output 3                           |  |  |  |  |
|   | OUT4       | Output 4                           |  |  |  |  |
|   | GND        | Ground " 4                         |  |  |  |  |

| 4 | Pin header | Description        |
|---|------------|--------------------|
|   |            | Modbus termination |
|   | Open       | Not terminated     |
|   | Connected  | Terminated         |

| Connector | Description             |
|-----------|-------------------------|
|           | RS485 Modbus/RTU slave  |
| A+        | DATA+                   |
| B-        | DATA-                   |
|           | Power supply            |
| 24 V      | 24 VAC/DC ±10 %         |
| GND       | Ground                  |
| GND       | Ground                  |
|           | A+<br>B-<br>24 V<br>GND |

| 6 | Connector                           | Description                                                                                                                       |  |  |
|---|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
|   |                                     | Voltage / current outputs  Output settings can be modified from the display menu  See the lid label for factory default settings. |  |  |
|   | OUT1<br>OUT2<br>OUT3<br>OUT4<br>GND | Output 1 Output 2 Output 3 Output 4 Ground                                                                                        |  |  |

## **DIMENSIONAL DRAWINGS**




## INSTALLATION

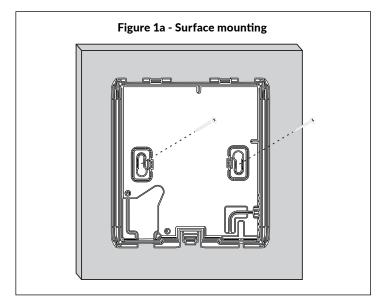
- 1) Mount the device in the desired location (see step 1).
- 2) Route the cables and connect the wires (see step 2).
- 3) Connect the display cable to the display connector on the PCB. (See schematics)
- 4) The device is now ready for configuration.

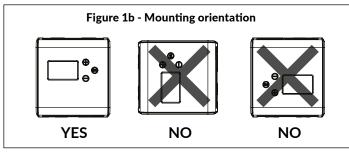
 $ilde{\mathbb{M}}$  WARNING! Apply power only after the device is properly wired.

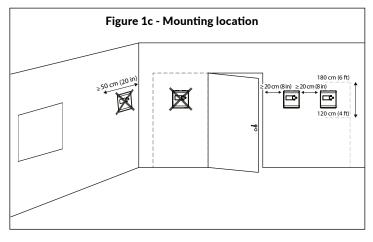
## **OPENING/CLOSING THE LID**



- 1) Open the lid by pressing the center from the bottom of the lid as in the figure.
- 2) Close the lid by inserting the top of the lid into the grooves first and pushing the bottom edge as in the figure.


## STEP 1: MOUNTING THE DEVICE

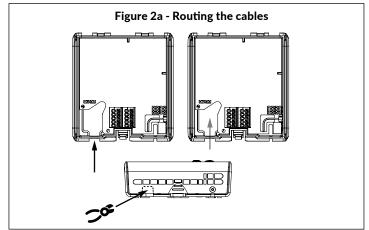

1) Select a mounting location on the wall at 1.2–1.8 m (4–6 ft) above the floor and at least 50 cm (20 in) from the adjacent wall. Do not block device air vents from any direction and leave atleast 20 cm (8 in) gap to other devices. Locate the unit in an area with good ventilation and an average temperature, where it will be responsive to changes to the room conditions. The Siro-MOD should be mounted on a flat surface.


Do not locate the Siro-MOD where it can be affected by:

- Direct sunlight
- Drafts or dead areas behind doors
- Radiant heat from appliances
- Concealed pipes or chimneys
- Outside walls or unheated / uncooled areas
- 2) Use the device as a template and mark the screw holes.
- 3) Mount the wall plate with screws.

CAUTION! Incorrect installation may cause a shift in measurements.

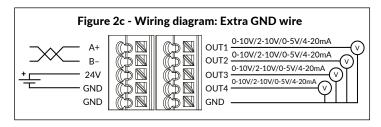







#### **STEP 2: WIRING DIAGRAMS**

#### **CAUTION!**


- For CE compliance, a properly grounded shielding cable is required.
- Use copper wire only. Insulate or wire nut all unused leads.
- Care should be used to avoid electrostatic discharge to the device.
- This unit has configuration jumpers. You may need to reconfigure this device for your application.
- 1) Route the cables through the opening in the back plate or for surface wiring select a knockout on the bottom of the wall plate, as shown in Figure 2a.
- 2) Connect the wires as shown in Figure 2b and 2c.

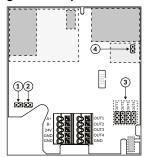


NOTE! When using long connection wires it may be necessary to use a separate GND wire for voltage output current to prevent measurement distortion. The need for an extra GND wire depends on the cross section and length of the used connection wires. If long and/or small cross section wires are used, supply current and wire resistance may generate a voltage drop in the common GND wire resulting in a distorted output measurement.

When using AC power supply, make sure that the ground potential of the signal is the same as the ground potential of the supply voltage to avoid short circuit through the additional GND wire.

It is recommended to use shielded twisted pair cable for modbus cabling. The cable shield must be earthed only in one point, normally, at the end of the main cable.




## **STEP 3: CONFIGURATION**

Configuration of the Siro-MOD series device consists of:

- 1) Configuring the jumpers (see step 4).
- 2) Configuration menu options.
  (Display (-D) or configuration tool required. See the user manual for further details.)

#### STEP 4: JUMPER SETTINGS

#### Figure 3 - Jumper installation



1) Configuration of the output modes:

Select the output mode, current (4-20 mA) (optional) or voltage (0-10 V) for each output (1-4) by installing jumpers as shown in Figure 4.

On a display version of the device, the output scale can be changed via the configuration menu. An external configuration tool is available for devices without user interface.

First, select the output mode by jumper, then select the output scale (4–20 mA (optional) / 0–10 V / 2–10 V / 0–5 V) via the configuration menu. Please see the user manual for more details.

#### NOTE! When using mA output, do not use Vout scalings from the menu.

Using 2-10 V output in some applications it is critical to know immidiately if the wire is broken or the device is damaged. In these cases, a 2-10 voltage output is recommended.

# 

 Output range selection with CO2- and PM-models: Install the jumper 1 (figure 3) to change output range. This feature is intended to use only on devices without display. On a display version of

the device, the output range can be selected via the configuration menu.

Please see the user manual for more details.

| <b>(1</b> ) | Pin header        | Description                                        |  |
|-------------|-------------------|----------------------------------------------------|--|
| )           |                   | CO2 / PM output range selection                    |  |
|             | Open<br>Connected | 4002000 ppm (CO2 models)<br>02000 ppm (CO2 models) |  |
|             | Open<br>Connected | 0500 μg/m3 (PM models)<br>050 μg/m3 (PM models)    |  |

3) Locking the display:

Install the jumper 2 (figure 3) to lock the display to prevent access to the configuration menu after installation is completed.

4) Modbus termination:

Install a jumper 4 (figure 3) to terminate Modbus. In order to avoid signal reflections, Modbus termination jumper must be installed in case if the device is the last one of the bus.

#### STEP 5: MODBUS REGISTERS

Function code 03 - Read holding registers, Function code 06 - Write single register, Function code 16 - Write multiple registers, Broadcast supported with address 0

| Register | Parameter description | Data type | Min value | Max value | Range                       |
|----------|-----------------------|-----------|-----------|-----------|-----------------------------|
| 4x0001   | Offset CO2            | 16 bit    | -200      | 200       | -200200 ppm                 |
| 4x0002   | Offset Humidity       | 16 bit    | -100      | 100       | -10.010.0 %                 |
| 4x0003   | Offset Celsius *1     | 16 bit    | -50       | 50        | -5.05.0 °C                  |
| 4x0004   | Offset Fahrenheit *1  | 16 bit    | -90       | 90        | -9.09.0 °F                  |
| 4x0005   | Offset TVOC ppm       | 16 bit    | -300      | 300       | -3.003.00 ppm               |
| 4x0006   | Offset TVOC ug/m3     | 16 bit    | -1000     | 1000      | -10001000 ug/m3             |
| 4x0007   | Offset CO2 EQ         | 16 bit    | -200      | 200       | -200200 ppm                 |
| 4x0008   | Offset PM             | 16 bit    | 30        | 200       | 0.32.0 coefficient          |
| 4x0009   | Backlight intensity   | 16 bit    | 0         | 100       | 0100%                       |
| 4x0010   | Display Celsius *2    | 16 bit    | 0         | 6         | Position number, 0=not used |
| 4x0011   | Display Fahrenheit *2 | 16 bit    | 0         | 6         | Position number, 0=not used |
| 4x0012   | Display Humidity      | 16 bit    | 0         | 6         | Position number, 0=not used |
| 4x0013   | Display CO2           | 16 bit    | 0         | 6         | Position number, 0=not used |
| 4x0014   | Display CO2 EQ        | 16 bit    | 0         | 6         | Position number, 0=not used |
| 4x0015   | Display PM2.5 hour    | 16 bit    | 0         | 6         | Position number, 0=not used |
| 4x0016   | Display PM10 hour     | 16 bit    | 0         | 6         | Position number, 0=not used |
| 4x0017   | Display IAQ           | 16 bit    | 0         | 6         | Position number, 0=not used |

<sup>\*1=</sup>Celsius and Fahrenheit limits are interdependent, and thus a change in one limit of a measurement will also change the limits of the other measurement. Use Function code 06 (write single register) for Celsius or Fahrenheit.

#### MODBUS REGISTERS CONTINUED

#### Function code 04 - Read input register

| Register | Parameter description  | Data type | Min value | Max value | Range           |
|----------|------------------------|-----------|-----------|-----------|-----------------|
| 3x0001   | Program version        | 16 bit    | 1         | 9999      | 0.0199.99       |
| 3x0002   | CO2 reading            | 16 bit    | 0         | 2500      | 02500 ppm       |
| 3x0003   | rH reading             | 16 bit    | 0         | 1000      | 0.0100.0 %      |
| 3x0004   | Temperature Celsius    | 16 bit    | 0         | 500       | 0.050.0 °C      |
| 3x0005   | Temperature Fahrenheit | 16 bit    | 320       | 1220      | 32.0122.0 °F    |
| 3x0006   | TVOC ppm reading       | 16 bit    | 0         | 3200      | 0.0032.00 ppm   |
| 3x0007   | TVOC ug/m3 reading     | 16 bit    | 0         | 10000     | 010000 ug/m3    |
| 3x0008   | CO2_eq reading         | 16 bit    | 0         | 12000     | 012000 ppm      |
| 3x0009   | IAQ reading TVOC       | 16 bit    | 1         | 5         | 15 IAQ index    |
| 3x0010   | IAQ reading PM         | 16 bit    | 1         | 5         | 15 IAQ index    |
| 3x0011   |                        |           |           |           |                 |
| 3x0012   | PM1 reading            | 16 bit    | 0         | 1000      | 01000 ug/m3     |
| 3x0013   | PM2.5 reading          | 16 bit    | 0         | 1000      | 01000 ug/m3     |
| 3x0014   | PM10 reading           | 16 bit    | 0         | 1000      | 01000 ug/m3     |
| 3x0015   | PM2.5 1h average       | 16 bit    | 0         | 10000     | 0.01000.0 ug/m3 |
| 3x0016   | PM2.5 24h average      | 16 bit    | 0         | 10000     | 0.01000.0 ug/m3 |
| 3x0017   | PM10 1h average        | 16 bit    | 0         | 10000     | 0.01000.0 ug/m3 |
| 3x0018   | PM10 24h average       | 16 bit    | 0         | 10000     | 0.01000.0 ug/m3 |
| 3x0019   |                        |           |           |           |                 |
| 3x0020   | Error status           | 16 bit    | 0         | 65535     | See table below |

#### 3x0020 Error status bits

| Bit 0 temperature sensor detected, | 0 = not detected, 1=detected           |
|------------------------------------|----------------------------------------|
| Bit 1 humidity sensor detected,    | 0 = not detected, 1=detected           |
| Bit 2 co2 sensor detected,         | 0 = not detected, 1=detected           |
| Bit 3 voc sensor detected,         | 0 = not detected, 1=detected           |
| Bit 4 pm sensor detected,          | 0 = not detected, 1=detected           |
| Bit 5 display module detected,     | 0 = not detected, 1=detected           |
| Bit 6 current(mA) module detected, | 0 = not detected, 1=detected           |
| Bit 8 sensor warm up               | 0 = normal operation, 1 = warm up      |
| Bit 9 rht status                   | 0 = normal operation, >0 reading error |
| Bit 10 CO2 status                  | 0 = normal operation, >0 reading error |
| Bit 11 pm status                   | 0 = normal operation, >0 reading error |
| Bit 12 voc status                  | 0 = normal operation, >0 reading error |

## RECYCLING/DISPOSAL

The parts left over from installation should be recycled according to your local instructions. Decommissioned devices should be taken to a recycling site that specializes in electronic waste.



#### **WARRANTY POLICY**

The seller is obligated to provide a warranty of five years for the delivered goods regarding material and manufacturing. The warranty period is considered to start on the delivery date of the product. If a defect in raw materials or a production flaw is found, the seller is obligated, when the product is sent to the seller without delay or before expiration of the warranty, to amend the mistake at his/her discretion either by repairing the defective product or by delivering free of charge to the buyer a new flawless product and sending it to the buyer. Delivery costs for the repair under warranty will be paid by the buyer and the return costs by the seller. The warranty does not comprise damages caused by accident, lightning, flood or other natural phenomenon, normal wear and tear, improper or careless handling, abnormal use, overloading, improper storage, incorrect care or reconstruction, or changes and installation work not done by the seller. The selection of materials for devices prone to corrosion is the buyer's responsibility, unless otherwise is legally agreed upon. Should the manufacturer alter the structure of the device, the seller is not obligated to make comparable changes to devices already purchased. Appealing for warranty requires that the buyer has correctly fulfilled his/her duties arisen from the delivery and stated in the contract. The seller will give a new warranty for goods that have been replaced or repaired within the warranty, however only to the expiration of the original product's warranty time. The warranty includes the repair of a defective part or device, or if needed, a new part or device, but not installation or exchange costs. Under no circumstance is the seller liable for damages compensation for indirect damage.

 $<sup>^*2</sup>$ = Use Function code 16 (write multiple registers) for display configuration. Valid value (0 / 1...6) needed for all display configuration registers. (see Siro User Guide STEP 1.1: Display view)